Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-*N*,*N*-dicyclohexylacetamide

Jian-Fei Liu,^a Xiao-Fang Tang^b and Yong-Hong Wen^{b*}

^aCollege of Science and Technology, Jiangxi Science and Technology Normal University, Nanchang 330038, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: wenyyhh@126.com

Received 19 October 2007; accepted 25 October 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.095; data-to-parameter ratio = 21.8.

In the title compound, $C_{14}H_{24}CINO$, the bond lengths and angles are within normal ranges and comparable to those of related compounds. The geometry of the two cyclohexyl groups is the normal chair conformation. The crystal packing is stabilized by $C-H\cdots C$ short-contact interactions.

Related literature

For related literature, see: Allen *et al.* (1987); Wen *et al.* (2005); Wen, Li *et al.* (2006); Wen, Zhang *et al.* (2006); Zhang, Wen *et al.* (2006); Zhang, Xu *et al.* (2006).

Experimental

Crystal data

C₁₄H₂₄ClNO $M_r = 257.79$ Orthorhombic, $P2_12_12_1$ a = 10.339 (2) Å b = 11.051 (2) Å c = 12.358 (3) Å

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.980, T_{\rm max} = 0.990$ $V = 1412.1 (5) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 113 (2) K $0.08 \times 0.06 \times 0.04 \text{ mm}$

17892 measured reflections 3363 independent reflections 3079 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$

Refinement

-	
$R[F^2 > 2\sigma(F^2)] = 0.042$	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.095$	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$
S = 1.02	Absolute structure: Flack (1983),
3363 reflections	with 1436 Friedel pairs
154 parameters	Flack parameter: 0.01 (6)
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

e	1	,	
Cl1-Cl4	1.7827 (18)	N1-C7	1.476 (2)
O1-C13	1.2308 (19)	C13-C14	1.527 (2)
N1-C13	1.351 (2)		
C13-N1-C7	123.05 (13)	N1-C1-C2	113.59 (13)
C13-N1-C1	120.01 (13)	N1-C1-C6	113.46 (13)
C7-N1-C1	116.83 (13)	C2-C1-C6	111.34 (13)

Table 2 Hydrogen-bond geometry (Å, °).

Hydrogen-bond geometry (A, ⁺).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $C14-H14A\cdots O1^i$ 0.97 2.39 3.255 (2)
 148

 Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$ $-y + \frac{1}{2}, -z + 1.$ $-y + \frac{1}{2}, -z + 1.$

Symmetry code: (1) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Data collection: *SMART* (Bruker 2001); cell refinement: *SAINT* (Bruker 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2006BS03049).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2321).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, 04427–04428.
- Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, 0347–0348.
- Wen, Y. H., Zhang, S. S., Yu, B. H., Li, X. M. & Liu, Q. (2006). Asian J. Chem. 18, 1032–1038.
- Zhang, S.-S., Wen, H.-L., Li, X.-M., Xu, L.-L. & Wen, Y.-H. (2006). Acta Cryst. E62, 03412–03413.
- Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, 03071–03072.

supplementary materials

Acta Cryst. (2007). E63, o4539 [doi:10.1107/S1600536807053366]

2-Chloro-N,N-dicyclohexylacetamide

J.-F. Liu, X.-F. Tang and Y.-H. Wen

Comment

N-Substituted-2-chloroacetamides are important intermediates in organic synthesis. They can be used in the synthesis of many derivatives such as (quinolin-8-yl-oxy)acetamide (Zhang, Xu *et al.*, 2006), 2,5-piperazinedione (Wen, Zhang *et al.*, 2006) and 2,2-(1,3,4- thiadiazolyl-2,5-dithio)diacetamide (Wen *et al.*, 2005). Here, we have synthesized and carried out the structure determination of the title compound, (I) (Fig. 1), a new *N*,*N*-disubstituted-2- chloroacetamide.

In the molecule of (I), the bond lengths and angles (Table 1) are within normal ranges (Allen *et al.*, 1987), and comparable to those of the related compounds, 2-chloro-*N*-(4-nitrophenyl)acetamide (Wen, Li *et al.*, 2006), and 2-chloro-*N*-(4ethoxyphenyl)acetamide (Zhang, Wen *et al.*, 2006). The C1/C7/C13/N1 andN1/C1/C14/O1 units are planar, with the dihedral angle between them 4.12 (2)°. The geometries of two cyclohexyl groups are the normal chair conformations. The crystal packing is stabilized by C9—H9···Cl short-contact interactions (Fig. 2).

Experimental

Chloroacetyl chloride (5.65 g, 0.05 mol) was added to a solution of *N*,*N*-dicyclohexylamine (9.05 g, 0.05 mol) and triethylamine (5.1 g, 0.05 mol) in benzene (60 ml) over a period of 40 min, with cooling in an ice bath, and then the mixture was stirred at room remperature for 5 h. After separation of the triethylamine hydrochloride by filtration, the organic phase was washed three times with water. The benzene layer was removed and evaporated. The title compound was obtained after drying the colorless powder at room temperature for 48 h. Colourless single cystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution over a period of 8 d.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.95–0.99 Å, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.

Fig. 2. The packing diagram of (I), viewed down the *a* axis, showing the short-contact interactions (dashed lines).

reflections

2-Chloro-N,N-dicyclohexylacetamide

Crystal data	
C ₁₄ H ₂₄ ClNO	$F_{000} = 560$
$M_r = 257.79$	$D_{\rm x} = 1.213 {\rm Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3915
a = 10.339 (2) Å	$\theta = 2.5 - 27.9^{\circ}$
<i>b</i> = 11.051 (2) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 12.358 (3) Å	T = 113 (2) K
V = 1412.1 (5) Å ³	Column, colourless
Z = 4	$0.08\times0.06\times0.04~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	3363 independent reflections
Radiation source: fine-focus sealed tube	3079 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 293(2) K	$\theta_{\text{max}} = 27.9^{\circ}$
φ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.980, \ T_{\max} = 0.990$	$k = -14 \rightarrow 14$
17892 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0571P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.095$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
3363 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
154 parameters	Extinction correction: none

Primary atom site location: structure-invariant directAbsolute structure: Flack (1983), with 1436 Friedel
pairsSecondary atom site location: difference Fourier mapFlack parameter: 0.01 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.05746 (5)	0.20328 (5)	0.33226 (4)	0.03999 (15)
01	-0.10518 (11)	0.25868 (10)	0.57080 (11)	0.0253 (3)
N1	0.03499 (12)	0.10126 (12)	0.59095 (10)	0.0172 (3)
C1	-0.04307 (15)	0.04407 (14)	0.67755 (12)	0.0173 (3)
H1	0.0069	-0.0261	0.7021	0.021*
C2	-0.17229 (16)	-0.00591 (15)	0.63806 (13)	0.0194 (3)
H2A	-0.1581	-0.0584	0.5763	0.023*
H2B	-0.2276	0.0603	0.6153	0.023*
C3	-0.23877 (16)	-0.07731 (15)	0.72882 (14)	0.0219 (4)
H3A	-0.3231	-0.1042	0.7043	0.026*
H3B	-0.1877	-0.1484	0.7459	0.026*
C4	-0.25466 (17)	-0.00027 (16)	0.83032 (15)	0.0244 (4)
H4A	-0.3142	0.0656	0.8156	0.029*
H4B	-0.2912	-0.0493	0.8878	0.029*
C5	-0.12543 (17)	0.05114 (16)	0.86687 (14)	0.0245 (4)
H5A	-0.0689	-0.0147	0.8883	0.029*
H5B	-0.1388	0.1026	0.9294	0.029*
C6	-0.06063 (17)	0.12441 (15)	0.77701 (13)	0.0219 (4)
H6A	-0.1138	0.1938	0.7587	0.026*
H6B	0.0228	0.1537	0.8015	0.026*
C7	0.14973 (16)	0.03393 (14)	0.55313 (14)	0.0185 (3)
H7	0.1866	0.0804	0.4930	0.022*
C8	0.25475 (16)	0.02467 (16)	0.63952 (15)	0.0235 (4)
H8A	0.2224	-0.0204	0.7012	0.028*
H8B	0.2787	0.1050	0.6640	0.028*
C9	0.37321 (17)	-0.03934 (16)	0.59224 (17)	0.0281 (4)
H9A	0.4093	0.0096	0.5345	0.034*
H9B	0.4386	-0.0478	0.6480	0.034*
C10	0.33861 (18)	-0.16382 (16)	0.54811 (16)	0.0301 (4)
H10A	0.4148	-0.2007	0.5163	0.036*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H10B	0.3093	-0.2152	0.6068	0.036*
C11	0.23278 (19)	-0.15410 (17)	0.46302 (15)	0.0298 (4)
H11A	0.2092	-0.2345	0.4386	0.036*
H11B	0.2652	-0.1093	0.4012	0.036*
C12	0.11336 (17)	-0.09055 (15)	0.50785 (14)	0.0228 (4)
H12A	0.0753	-0.1395	0.5647	0.027*
H12B	0.0497	-0.0811	0.4508	0.027*
C13	-0.00411 (15)	0.20666 (15)	0.54622 (13)	0.0187 (3)
C14	0.08384 (16)	0.26703 (14)	0.46292 (14)	0.0217 (4)
H14A	0.1735	0.2559	0.4837	0.026*
H14B	0.0663	0.3532	0.4608	0.026*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0399 (3)	0.0581 (3)	0.0220 (2)	-0.0139 (2)	-0.0001 (2)	0.0024 (2)
01	0.0185 (6)	0.0240 (6)	0.0336 (7)	0.0053 (5)	0.0043 (5)	0.0066 (5)
N1	0.0148 (7)	0.0173 (7)	0.0196 (6)	0.0019 (5)	0.0044 (6)	0.0026 (5)
C1	0.0172 (8)	0.0171 (8)	0.0175 (7)	0.0006 (6)	0.0015 (7)	0.0026 (6)
C2	0.0187 (8)	0.0229 (8)	0.0166 (8)	-0.0003 (6)	-0.0002 (7)	-0.0010 (7)
C3	0.0214 (9)	0.0230 (9)	0.0215 (8)	-0.0039 (7)	0.0037 (7)	-0.0001 (7)
C4	0.0245 (9)	0.0275 (9)	0.0211 (8)	-0.0037 (7)	0.0073 (8)	-0.0006 (8)
C5	0.0290 (10)	0.0278 (9)	0.0165 (8)	0.0002 (7)	0.0020 (7)	-0.0017 (7)
C6	0.0208 (8)	0.0257 (9)	0.0191 (7)	-0.0024 (7)	0.0004 (7)	-0.0035 (7)
C7	0.0168 (8)	0.0174 (8)	0.0214 (8)	0.0015 (6)	0.0038 (7)	0.0005 (7)
C8	0.0159 (8)	0.0227 (9)	0.0320 (10)	-0.0004 (6)	-0.0003 (7)	-0.0005 (7)
C9	0.0183 (9)	0.0251 (9)	0.0408 (11)	0.0041 (7)	0.0035 (8)	0.0068 (8)
C10	0.0278 (10)	0.0243 (9)	0.0381 (11)	0.0083 (8)	0.0114 (9)	0.0065 (8)
C11	0.0410 (11)	0.0219 (9)	0.0264 (10)	0.0066 (8)	0.0119 (9)	-0.0019 (7)
C12	0.0253 (9)	0.0211 (8)	0.0221 (8)	-0.0003 (7)	0.0012 (7)	-0.0017 (7)
C13	0.0159 (8)	0.0195 (8)	0.0206 (8)	-0.0006 (6)	-0.0007 (6)	0.0018 (7)
C14	0.0218 (9)	0.0182 (8)	0.0250 (9)	0.0004 (6)	0.0017 (7)	0.0033 (7)

Geometric parameters (Å, °)

Cl1—C14	1.7827 (18)	С6—Н6В	0.9700
O1—C13	1.2308 (19)	С7—С8	1.526 (2)
N1—C13	1.351 (2)	C7—C12	1.532 (2)
N1—C7	1.476 (2)	С7—Н7	0.9800
N1—C1	1.4819 (19)	C8—C9	1.530 (2)
C1—C2	1.526 (2)	С8—Н8А	0.9700
C1—C6	1.527 (2)	C8—H8B	0.9700
С1—Н1	0.9800	C9—C10	1.522 (3)
C2—C3	1.534 (2)	С9—Н9А	0.9700
C2—H2A	0.9700	С9—Н9В	0.9700
C2—H2B	0.9700	C10-C11	1.521 (3)
C3—C4	1.525 (2)	C10—H10A	0.9700
С3—НЗА	0.9700	C10—H10B	0.9700
С3—Н3В	0.9700	C11—C12	1.525 (3)

C4—C5	1.521 (2)	C11—H11A	0.9700
C4—H4A	0.9700	C11—H11B	0.9700
C4—H4B	0.9700	C12—H12A	0.9700
C5—C6	1.529 (2)	C12—H12B	0.9700
С5—Н5А	0.9700	C13—C14	1.527 (2)
С5—Н5В	0.9700	C14—H14A	0.9700
С6—Н6А	0.9700	C14—H14B	0.9700
C13—N1—C7	123.05 (13)	N1—C7—H7	106.8
C13—N1—C1	120.01 (13)	С8—С7—Н7	106.8
C7—N1—C1	116.83 (13)	С12—С7—Н7	106.8
N1—C1—C2	113.59 (13)	С7—С8—С9	109.47 (15)
N1—C1—C6	113.46 (13)	С7—С8—Н8А	109.8
C2—C1—C6	111.34 (13)	С9—С8—Н8А	109.8
N1—C1—H1	105.9	С7—С8—Н8В	109.8
C2—C1—H1	105.9	С9—С8—Н8В	109.8
C6—C1—H1	105.9	H8A—C8—H8B	108.2
C1—C2—C3	110.16 (13)	C10—C9—C8	111.50 (15)
C1—C2—H2A	109.6	С10—С9—Н9А	109.3
C3—C2—H2A	109.6	С8—С9—Н9А	109.3
C1—C2—H2B	109.6	С10—С9—Н9В	109.3
C3—C2—H2B	109.6	С8—С9—Н9В	109.3
H2A—C2—H2B	108.1	Н9А—С9—Н9В	108.0
C4—C3—C2	111.26 (14)	C11—C10—C9	110.66 (15)
С4—С3—Н3А	109.4	C11—C10—H10A	109.5
С2—С3—НЗА	109.4	С9—С10—Н10А	109.5
С4—С3—Н3В	109.4	C11—C10—H10B	109.5
С2—С3—Н3В	109.4	С9—С10—Н10В	109.5
НЗА—СЗ—НЗВ	108.0	H10A—C10—H10B	108.1
C5—C4—C3	111.00 (14)	C10-C11-C12	111.34 (15)
C5—C4—H4A	109.4	C10-C11-H11A	109.4
C3—C4—H4A	109.4	C12—C11—H11A	109.4
C5—C4—H4B	109.4	C10-C11-H11B	109.4
C3—C4—H4B	109.4	C12—C11—H11B	109.4
H4A—C4—H4B	108.0	H11A—C11—H11B	108.0
C4—C5—C6	111.54 (14)	C11—C12—C7	110.34 (15)
С4—С5—Н5А	109.3	C11—C12—H12A	109.6
С6—С5—Н5А	109.3	C7—C12—H12A	109.6
C4—C5—H5B	109.3	C11—C12—H12B	109.6
C6—C5—H5B	109.3	C7—C12—H12B	109.6
H5A—C5—H5B	108.0	H12A—C12—H12B	108.1
C1—C6—C5	109.20 (13)	O1—C13—N1	123.76 (15)
С1—С6—Н6А	109.8	O1—C13—C14	117.90 (15)
С5—С6—Н6А	109.8	N1—C13—C14	118.31 (14)
С1—С6—Н6В	109.8	C13—C14—Cl1	110.29 (12)
С5—С6—Н6В	109.8	C13—C14—H14A	109.6
Н6А—С6—Н6В	108.3	Cl1—C14—H14A	109.6
N1—C7—C8	112.58 (13)	C13—C14—H14B	109.6
N1—C7—C12	111.78 (13)	Cl1—C14—H14B	109.6
C8—C7—C12	111.71 (14)	H14A—C14—H14B	108.1

supplementary materials

C13—N1—C1—C2	69.27 (18)	C1—N1—C7—C12	59.52 (18)
C7—N1—C1—C2	-107.01 (15)	N1—C7—C8—C9	-176.61 (13)
C13—N1—C1—C6	-59.22 (19)	C12—C7—C8—C9	56.66 (18)
C7—N1—C1—C6	124.51 (15)	C7—C8—C9—C10	-56.9 (2)
N1—C1—C2—C3	172.81 (13)	C8—C9—C10—C11	57.0 (2)
C6—C1—C2—C3	-57.63 (18)	C9-C10-C11-C12	-56.2 (2)
C1—C2—C3—C4	55.47 (19)	C10-C11-C12-C7	55.71 (19)
C2—C3—C4—C5	-55.04 (19)	N1-C7-C12-C11	176.38 (14)
C3—C4—C5—C6	56.40 (19)	C8—C7—C12—C11	-56.45 (18)
N1—C1—C6—C5	-172.10 (12)	C7—N1—C13—O1	173.80 (15)
C2—C1—C6—C5	58.27 (18)	C1-N1-C13-O1	-2.2 (2)
C4—C5—C6—C1	-57.46 (19)	C7—N1—C13—C14	-8.2 (2)
C13—N1—C7—C8	116.68 (17)	C1—N1—C13—C14	175.78 (14)
C1—N1—C7—C8	-67.17 (17)	O1-C13-C14-Cl1	-98.04 (16)
C13—N1—C7—C12	-116.62 (16)	N1-C13-C14-Cl1	83.83 (16)
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C14—H14A···O1 ⁱ	0.97	2.39	3.255 (2)	148
Symmetry codes: (i) $x+1/2, -y+1/2, -z+1$.				

Fig. 1

